Adding matrices¶
We can add vectors by just adding the corresponding numbers: $$ \red{\begin{bmatrix} 1 \\ 2 \end{bmatrix}} + \blue{\begin{bmatrix} 3 \\ 4 \end{bmatrix}} = \begin{bmatrix} \red1+\blue3 \\ \red2+\blue4 \end{bmatrix}. $$ Let's extend this to matrices of any size like this: $$ \begin{align} \red{\begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix}} + \blue{\begin{bmatrix} 7 & 9 & 11 \\ 8 & 10 & 12 \end{bmatrix}} &= \begin{bmatrix} \red1+\blue7 & \red3+\blue9 & \red5+\blue{11} \\ \red2+\blue8 & \red4+\blue{10} & \red6+\blue{12} \end{bmatrix}. \end{align} $$ Note that $A+B$ is undefined if the matrices $A$ and $B$ have different sizes, because then you can't choose the corresponding elements from them.
Added matrices with matrix-vector multiplication¶
If we multiply the matrix above with a vector, e.g. $\green{(13,14,15)}$, we get $$ \begin{align} &~~~~ \begin{bmatrix} \red1+\blue7 & \red3+\blue9 & \red5+\blue{11} \\ \red2+\blue8 & \red4+\blue{10} & \red6+\blue{12} \end{bmatrix} \begin{bmatrix}\green{13}\\\green{14}\\\green{15}\end{bmatrix} \\ &= \green{13}\begin{bmatrix} \red1+\blue7 \\ \red2+\blue8 \end{bmatrix} + \green{14}\begin{bmatrix} \red3+\blue9 \\ \red4+\blue{10} \end{bmatrix} + \green{15}\begin{bmatrix} \red5+\blue{11} \\ \red6+\blue{12} \end{bmatrix} \\ %&= \begin{bmatrix} \green{13}(\red1+\blue7) \\ \green{13}(\red2+\blue8) \end{bmatrix} %+ \begin{bmatrix} \green{14}(\red3+\blue9) \\ \green{14}(\red4+\blue{10}) \end{bmatrix} %+ \begin{bmatrix} \green{15}(\red5+\blue{11}) \\ \green{15}(\red6+\blue{12}) \end{bmatrix} \\ %&= \begin{bmatrix} % \green{13}(\red1+\blue7) + \green{14}(\red3+\blue9) + \green{15}(\red5+\blue{11}) \\ % \green{13}(\red2+\blue8) + \green{14}(\red4+\blue{10}) + \green{15}(\red6+\blue{12}) &= \begin{bmatrix}512\\596\end{bmatrix}. \end{align} $$ If we multiply the vector separately with the two original matrices, we get $$ \begin{align} &~~~~ \red{\begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix}}\begin{bmatrix}\green{13}\\\green{14}\\\green{15}\end{bmatrix} + \blue{\begin{bmatrix} 7 & 9 & 11 \\ 8 & 10 & 12 \end{bmatrix}}\begin{bmatrix}\green{13}\\\green{14}\\\green{15}\end{bmatrix} \\ &= \green{13}\red{\begin{bmatrix} 1 \\ 2 \end{bmatrix}} + \green{14}\red{\begin{bmatrix} 3 \\ 4 \end{bmatrix}} + \green{15}\red{\begin{bmatrix} 5 \\ 6 \end{bmatrix}} \\ &\qquad + \green{13}\blue{\begin{bmatrix} 7 \\ 8 \end{bmatrix}} + \green{14}\blue{\begin{bmatrix} 9 \\ 10 \end{bmatrix}} + \green{15}\blue{\begin{bmatrix} 11 \\ 12 \end{bmatrix}} \\ &= \green{13}\left(\red{\begin{bmatrix} 1 \\ 2 \end{bmatrix}}+\blue{\begin{bmatrix} 7 \\ 8 \end{bmatrix}}\right) + \green{14}\left(\red{\begin{bmatrix} 3 \\ 4 \end{bmatrix}}+\blue{\begin{bmatrix} 9 \\ 10 \end{bmatrix}}\right) + \green{15}\left(\red{\begin{bmatrix} 5 \\ 6 \end{bmatrix}}+\blue{\begin{bmatrix} 11 \\ 12 \end{bmatrix}}\right) \\ &= \begin{bmatrix}512\\596\end{bmatrix}. \end{align} $$ We got the same result, and this works in general whenever the sizes of the matrices and the vector are correct.
Let $A$ and $B$ be matrices of the same size, and let $\vec v$ be a vector whose dimension is the width of $A$ and $B$. Then $$ (A+B)\vec v = A\vec v+B\vec v. $$
This explains why matrix-vector multiplication is called multiplication. We have $(a+b)c=ac+bc$ with numbers, and by writing matrix-vector multiplication similarly to the multiplication of numbers, the same rule works for it too.
This is also a good way to understand the linear function corresponding to $A+B$. It calculates the values of $A$'s and $B$'s linear functions, and adds the resulting vectors.
We already know this works when adding vectors instead of matrices, as in $$ A(\vec v + \vec w) = A\vec v + A\vec w, $$ because this is same as $f(\vec v + \vec w) = f(\vec v) + f(\vec w)$, where $f$ is the linear function corresponding to $A$.
Added matrices with matrix-matrix multiplication¶
Recall that matrix-matrix-vector multiplications can be safely written without parentheses.
Consider any matrix multiplication with a sum on the left side, like $(A+B)C$. For a vector $\vec v$, we can use the previous result with the vector $C\vec v$, and we get $$ (A+B)C\vec v = AC\vec v+BC\vec v. $$ On the other hand, for the matrices $AC$ and $BC$ it gives $$ (AC + BC)\vec v = AC\vec v + BC\vec v. $$ By putting all this together, we get $$ (A+B)C\vec v = (AC+BC)\vec v. $$ By choosing $\vec v = (1,0,0,\dots,0)$, we see that $(A+B)C$ and $AC+BC$ have the same left column. With $\vec v = (0,1,0,\dots,0)$, we see that they have the same second column, and so on.
$(A+B)C=AC+BC$ works with matrices.
This doesn't prove that we have $A(B+C)=AB+AC$, because the order matters. However, we can derive $A(B+C)=AB+AC$ similarly. For a vector $\vec v$, we get $$ A(B+C)\vec v = A(B\vec v + C\vec v) = AB\vec v + AC\vec v, $$ and on the other hand, $$ (AB+AC)\vec v = AB\vec v + AC\vec v. $$ The rest goes just like in the previous derivation.
$A(B+C)=AB+AC$ works with matrices.
These results explain why matrix multiplication is called multiplication: when combined with $+$, it follows the same rules as the multiplication of numbers.